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Motivation

• Learning to predict solutions to real-valued combinatorial graph
problems promises efficient approximations.
•Recurrent Neural Networks (RNNs) provide model-agnostic

heuristics that can process graphs of variable sizes.
• Theoretical understanding of the number of samples required to

learn real-valued RNNs, and thus their ability to scale for an
exponentially increasing number of graphs, is missing.

Upper bound for RNN sample complexity

Theorem 1 (Sample complexity for single-layer RNNs)
A recurrent neural network with (1) a single recurrent layer of width
a, (2) rectified linear units, (3) input of maximal length b, and (4) one
real-valued output unit is learnable with sample complexity ML(ε, δ)
that is bounded by

ML(ε, δ) ≤ 128
ε2
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where ε is the population prediction error and 1− δ the confidence.

Key implications:

•A population prediction error of ε can be obtained with at most
Õ (a4b/ε2) samples, i. e. linear in the maximum input length and
polynomial in the number of recurrent units.
• Extension to d layers is straightforward and results in a sample

complexity bound of Õ(d2a4
maxb/ε

2).
• Proofs are based novel bounds on RNN pseudo-dimension that

make use of network size given by the number and type of
parameters.

Application to combinatorial graph problems

•We aim at learning an approximation to a graph problem (such as
ECCN) η : G≤n→ R, where G≤n is the set of graphs with up to n
vertices.
• Each graph x is represented by its adjacency matrix mapped onto a

single vector, i.e. x = (x1, . . . , xm2) (m ≤ n).

Theorem 2
Under some norm restrictions on parameters, a single hidden layer
RNN with n units operating on G≤n can be learned with sample com-
plexity ML(ε, δ) bounded by

ML(ε, δ) ≤ 128
ε2

[
ln
(

16
δ

)
+ ln

(
34
ε

)
× 4(n2 + 4n + 3)(4n4 + 8n3 + 4n + 10 + log2(8e))

]
,

where ε is the population prediction error and 1− δ the confidence.

Key implications:

•A population prediction error of ε for our size-adaptive model can
be reached with at most Õ(n6/ε2) samples, i. e. polynomial in
graph size.
• For d layers, this only increases to Õ(d2n6/ε2) which suggest a

favorable approximation performance is possible with a polynomial
number of samples.
• This is a worst-case analysis independent of the problem

distribution P and thus applicable to a wide range of graph
problems.

The edge click cover number
• The Edge Click Cover Number (ECCN) of

a graph is the minimum number of
cliques, i. e. fully connected sub-graphs,
required to cover all edges.
•NP-hard and thus computationally

challenging.
•Relevant to a variety of practical

applications incl. compiler optimization,
protein interaction networks, etc.
•Known heuristics are scarce, with the

Kellerman heuristic being the notable
exception.
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Figure 1:Graph with cliques
V1 = {1, 2, 3, 4, 5},V2 =
{1, 5, 6} and V3 = {5, 7}
forming a minimal edge
clique cover.

Performance across training sample size

•We numerically evaluate how the number of training samples
affects the out-of-sample performance in predicting the ECCN.
•With sufficient training data, neural learning over graphs is on par

with the Kellerman heuristic and often even outperforms it.
•A reasonable performance can often be achieved with as little as

4,000 training samples.
(a) dense graphs (b) medium dense graphs
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(c) sparse graphs (d) mixed graphs
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Figure 2:Out-of-sample performance in predicting ECCN. Mean squared error (mse)
is reported as a function of the number of training samples (log-scale). With suffi-
cient training samples, RNN predictions can outperform a naïve baseline and, in
some cases, even the state-of-the-art heuristic.

Summary

• This is the first work that upper bounds the sample complexity for
learning real-valued RNNs.
•Given a single-layer RNN with a rectified linear units and input of

at most length b, we show that a population prediction error of ε can
be realized with at most Õ(a4b/ε2) samples. For d layers,
Õ(d2amaxb/ε

2) samples.
•A size-adaptive RNN fed with graphs of at most n vertices can be

learned in Õ(n6/ε2), i. e., with only a polynomial number of
samples.
•We demonstrate the effectiveness of RNNs on the NP-hard edge

clique cover number problem, which even outperforms
state-of-the-art heuristics.
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