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Motivation

e Learning to predict solutions to real-valued combinatorial graph
problems promises efficient approximations.

e Recurrent Neural Networks (RNNs) provide model-agnostic
heuristics that can process graphs of variable sizes.

e Theoretical understanding of the number of samples required to
learn real-valued RNNSs, and thus their ability to scale for an
exponentially increasing number of graphs, 1s missing.

Upper bound for RNN sample complexity

Theorem 1 (Sample complexity for single-layer RNNs)

A recurrent neural network with (1) a single recurrent layer of width
a, (2) rectified linear units, (3) input of maximal length b, and (4) one

real-valued output unit is learnable with sample complexity M (e, )
that 1s bounded by
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where ¢ is the population prediction error and 1 — 0 the confidence.

Key implications:

e A population prediction error of € can be obtained with at most
O (a*h/e?) samples, i. e. linear in the maximum input length and
polynomial in the number of recurrent units.

e Extension to d layers is straightforward and results in a sample
complexity bound of O(d?a’  b/e?).
e Proofs are based novel bounds on RNN pseudo-dimension that

make use of network size given by the number and type of
parameters.

Application to combinatorial graph problems

e We aim at learning an approximation to a graph problem (such as
ECCN) n : G, — R, where G, is the set of graphs with up to n
vertices.

e Each graph x 1s represented by its adjacency matrix mapped onto a
single vector, i.e. © = (21, ..., Z,2) (M < n).

Theorem 2

Under some norm restrictions on parameters, a single hidden layer
RNN with 7 units operating on G, can be learned with sample com-

plexity M7 (e, d) bounded by
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where ¢ is the population prediction error and 1 — 9 the confidence.

Key implications:

e A population prediction error of € for our size-adaptive model can
be reached with at most O(n"/&?) samples, i. e. polynomial in
graph size.

o For d layers, this only increases to O(d’n’/<?) which suggest a
favorable approximation performance is possible with a polynomial
number of samples.

e This 1s a worst-case analysis independent of the problem
distribution P and thus applicable to a wide range of graph
problems.

The edge click cover number

e The Edge Click Cover Number (ECCN) of
a graph 1s the minimum number of
cliques, 1. e. fully connected sub-graphs,
required to cover all edges.

e NP-hard and thus computationally
challenging.

e Relevant to a variety of practical
applications incl. compiler optimization,
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e Known heuristics are scarce, with the
Kellerman heuristic being the notable
exception.

Performance across training sample size

e We numerically evaluate how the number of training samples
affects the out-of-sample performance in predicting the ECCN.

e With sufficient training data, neural learning over graphs i1s on par
with the Kellerman heuristic and often even outperforms it.

¢ A reasonable performance can often be achieved with as little as

4,000 training samples.
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Figure 2:0ut-of-sample performance in predicting ECCN. Mean squared error (mse)
1s reported as a function of the number of training samples (log-scale). With suffi-
cient training samples, RNN predictions can outperform a naive baseline and, in
some cases, even the state-of-the-art heuristic.

Summary

e This 1s the first work that upper bounds the sample complexity for
learning real-valued RNNs.

e Given a single-layer RNN with a rectified linear units and input of
at most length b, we show that a population prediction error of £ can
be realized with at most O(a’b/c?) samples. For d layers,
O(dPamaxb/?) samples.

e A size-adaptive RNN fed with graphs of at most n vertices can be

learned in O(n%/?), i. e., with only a polynomial number of
samples.

e We demonstrate the effectiveness of RNNs on the NP-hard edge
clique cover number problem, which even outperforms
state-of-the-art heuristics.
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